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NASA has begun the development of the Space Station, a
permanently manned facility in space, for a variety of
scientific goals. One part of this project is the Flight
Telerobotic Servicer (FTS) which will help build and maintain
the structure. The FTS is envisioned as a two-armed robot
with seven degrees of freedom for each arm. When the FTS is
launched, it is expected to perform several tasks which
include the installation and removal of truss members of the
Space Station structure, changeout of a variety of modular
units, mating a thermal connector, etc. While the FTS will
initially use teleoperation, it is envisioned to become more
autonomous as technology advances. In order for the FTS to
evolve from teleoperation to autonomy, NASA requires that the
NASA/NBS Standard Reference Model (NASREM) be used as the
functional architecture for the control system. The quest for
autonomy inevitably leads to the need for sophisticated
sensors and sensory processing. This paper will explore the
requirements for the tasks envisioned for FTS at first launch
as well as during its evolution phase and show how those tasks
impact research on sensors, sensory processing, and other
parts of the FTS control system. Finally, the current state
of the NASREM implementation at NIST will be presented.

1. INTRODUCTION

The Flight Telerobotic Servicer (FTS) will be used to
build and maintain the Space Station. It is envisioned to be
used as a teleoperated device initially. However, it is
required to be able to evolve with technology and manifest

this evolution by becoming more and more autonomous. While
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teleoperation is the first step, there has been a deliberate
choice not to pursue telepresence.

There is a basic dichotomy in the evolution of FTS
activity from the operator’s perspective. The FTS can move
toward full telepresence or full autonomy. Reaching either
extreme, full telepresence or full autonomy, is a long term,
possibly unattainable objective. However, it is instructive
to examine the possibilities. A system that consists only of
telepresence implies that the human remains in the loop for
all task steps. 1In a telepresence system, the human operator
performs the tasks, his "presence" being translated to the
remote worksite via the technology. This capability is very
useful and even necessary for certain applications, especially
where the environment is relatively unknown or unstructured.
The development of systems which pursue true '"telepresence"
where the operator is immersed in sensory feedback will
require a great deal of R & D.

The nature of the FTS role on Space Station (i.e.,
assembly, maintenance, inspection, etc.) does not involve
tasks of a scientific or totally unstructured nature where the
human operator is actually performing some sort of
investigation. Therefore, the FTS is choosing to pursue
autonomy for several reasons. First, the repetitive chores
performed by the robot are less onerous to the operator if the
FTS had some autonomous capabilities. Second, the operator
does not give up anything since he may break into any level of
the NASREM architecture to take control at will. Third, time
delays may preclude telepresence for useful applications. For
example, in remote satellite servicing, the time delays
incurred between the operator and the FTS preclude the use of
force reflection and other sophisticated telepresence
techniques. An autonomous mode of operation may be the only
viable alternative. There may be only a sparse data return,
e.g., one image per minute. A telepresence strategy of move
and wait would be too slow to be a realistic option.

This paper explores what is required to have a sensor
based robot in space. First the tasks originally envisioned
for the FTS are presented along with a set of tasks required



of an evolved version of the FTS. Then, the problems
associated uniquely with space qualification and those
associated with the current state of robot technology are
presented. This is followed by a description of the NASA/NBS
Standard Reference Model for Telerobot Control System
Architecture (NASREM), which is required by NASA for the
control system of the FTS. Finally, the current state of
NASREM development at NIST is described.

2., FTS TASKS -- AT FIRST ELEMENT LAUNCH AND ASSEMBLY COMPLETE
The FTS is required to have certain capabilities at First
Element Launch (FEL) in support of building and maintaining
the Space Station. These tasks are intended to be
representative of the range of work which the FTS can perform
rather than the limit of its capabilities. The tasks are:

o Installation and removal of Space Station truss
members

o Installation of a Structural Interface Adapter
(SIA) on the truss.

o Changeout of Space Station Orbital Replaceable Units
(ORU) .

"o’ Mating of the Space Station thermal utility
connectors.
Performance of inspection tasks.
o Assembly and maintenance of Space Station Electrical
Power System Radiator Assembly.

The FTS is required to have, integral to its basic
design, the capability of evolving toward autonomous execution
of the tasks listed previously. 1In addition, the FTS should
eventually have the capability to perform the following tasks
autonomously:

o Changeout the Hubble Space Telescope (HST) reaction
wheel ORU while the HST is secured at the Space



Station or on the Space Shuttle.

o Refuel the Gamma Ray Observatory (GRO) propellant
tanks while the GRO is secured at the Space Station
or on the STS.

o In-situ servicing and maintenance of Space Station
platforms and free fliers.

In order to be able to perform these tasks, a significant
amount of sensor and sensor processing technology must be
integrated into the FTS system. Sensor capability must be

available for:

o Joint control
For example, the joints of the manipulator could
command torques and have sensors which measure

actual torque, position, and velocity.

o Vision processing
Image processing algorithms must be able to cope
with extreme variations in lighting.

o Contact force measurement

During operations such as mating a connector, it is
important to be able to measure the forces generated
by the robot in contact with the environment.
Without this information, there is no way for a
control algorithm to correct for errors. This would
probably require the use of a force/torque sensor.

o Safety
Since safety is extremely important, sensors which
redundantly measure important parameters must be
included in the FTS system. Example of these
sensors include robot joint position, proximity of
astronauts to the FTS workspace, etc.

The above tasks, as well as the sensors associated with
the tasks, will be performed in space. This implies a fairly



complex FTS, especially in the requirement for sufficient
compute power. The next two sections explore some of the
problems in sending the FTS into space.

3. SPACE QUALIFICATION PROBLEMS ASSOCIATED WITH ROBOT SYSTEMS

Space qualification is a rigorous process to ensure that
the systems which are sent into the harsh space environment
will work reliably. It is well beyond the scope of this paper
to explore the technical details of any particular problem.
However, this section will hopefully provide the reader with
an appreciation of the complexity associated with sending a
system into space.

The first problem is associated with materials science.
The materials which are used to construct robots and the
required ancillary equipment must be able to withstand the
harsh space environment and function as expected. The
materials must be able to resist thermal fatigue caused by the
cycles of extreme heat and cold. Furthermore, they must not
outgas, i.e., release gases into space.

The space qualification of electronic components,
especially computers, presents a formidable challenge. Most
electronic circuitry is sensitive to two types of radiation.
The first type is the background radiation which is
significantly higher in space than on Earth due to the
atmosphere. Consequently, all electronic circuitry must be
able to withstand a certain level of total dose radiation.
This is tested in the qualification process and a level of
radiation hardness must be met. The second type of radiation
is caused by cosmic rays, with enough energy to change a bit,
passing through the circuit. This phenomenon is known as a
siﬁélé event upset (SEU). Clearly, the circuitry must either
be insensitive to the SEU or must detect and react to it.
Unfortunately, both the radiation-hard and SEU issues often
involve the redesign of the manufacturing processes for the
integrated circuits.

For mission critical activities or when human safety is
at risk, the electronics are required to be "two fault



tolerant." If any fault occurs, the system can still operate.
If a second fault develops anywhere in the system, then the
system fails in a safe manner. This requirement has major
implications for redundancy and protocols of switching between
subsystems after a fault is detected. This is clearly an area
of continuing research.

Thermal considerations play an important role in the
total system design since removing heat by convection is not
an option in space. Motors, for example, must be capable of
either conducting or radiating the heat generated. It is
possible to use passive methods for thermal control but often
the active methods using fluid loops are more effective.
However, the active loops often require hazardous chemicals
such as ammonia compounds and are a great deal more complex to
handle. Dangerous chemicals invoke safety rules which may
preclude servicing in the pressurized unit and extra-vehicular
servcing limits the types of possible repairs.

If robots are going to operate in space without umbilical
cords for any period of time, batteries are required. The
batteries must operate in a vacuum, be insensitive to
temperature variations, store significant energy, weigh as
little as possible, and take up a small volume.

Simulation has often been used with great success to
determine the value of one approach over another. The problem
with simulation, of course, is that the simulation may not
represent reality sufficiently, i.e., the model may lack
fidelity. On Earth, it is possible to simulate first and then
empirically test the system to determine the accuracy of the
model. For space, the situation is more complex because it is
very difficult to predict exactly how the robot system will
behave without gravity.

"’ This list of problems for the space qualification of
robot systems is by no means complete. However, the number of
significant issues should provide some level of appreciation
for the complexity associated with putting robots in space.



4. GENERIC ROBOT TECHNOLOGY PROBLEMS

The second class of problems associated with space
robotics is also present in ground based automata. The
solutions to this class of problems will advance the state-of-
the-art in robotics.

Control methods for robots have traditionally centered on
position control where a robot is programmed to follow a
predefined path. While this approach has proved quite useful
for certain applications in industrial automation, it is not
entirely satisfactory for factories and therefore is probably
also unsuitable for space utilization. The cost associated
with errors in space is enormous and more advanced control
methods, such as impedance control [1], appear to hold more
promise. However, it is not entirely clear which advanced
control algorithm is best for a given application. There is a
need to study a set of alternative algorithms in the execution
of a given battery of tasks. Knowledge of which algorithms
work on which tasks and the reasons why is essential to
improve robot control technology.

A second problem area in robot technology is associated
with modeling the workspace of the robot. A representation of
the robot workspace is required to allow the robot to operate
with known objects in a sensible fashion. Many alternatives
for this representation exist and must be tested in a
systematic way to ascertain which approach is most
appropriate. A robot in space operates in a reasonably
unstructured environment. Although it can be argued that
everything sent into space for the Space Station is man-made
and a CAD model is available, there will always be slight
discrepancies which will make real objects differ from their
models. Since it is possible that such a disparity could
result in a catastrophe, such as an object which is larger
than its model being pushed through a satellite, a highly
calibrated workspace is nearly impossible. The workspace
representation can be close, but sensors are required to
prevent disasters. Sensory processing, therefore, must be an
integral part of a robotic system and interact effectively
with the model of the robot workspace so that the algorithms



controlling robot motion can be as efficacious as possible.

Sensory processing presents other demanding challenges
for robot systems in terms of quality and processing rate. It
is well known that lighting is crucial for success in
industrial implementations of computer vision. Shadows,
specular reflection, lens distortion, etc., will have even
more impact in space since the environment cannot be
controlled as well as in a factory. The speed of sensory
processing is also critical because it can 1limit the rate the
control system can move the robot in response to stimuli. The
improvements required for sensory processing in space will
increase the available knowledge and ultimately benefit all
robot systems.

The last area is concerned with how the operator commands
a robot, the operator interface. 1In teleoperation, there are
several issues. The first issue is whether the control
device, or master, is kinematically similar to or different
from the telerobot. The amount of computation required to
control the kinematically similar master is much lower than
that required for the kinematically dissimilar master.
However, the production of a kinematically similar master is
required for each new robot.

Another issue in operator control is kinesthetic
feedback. Without force reflection, the operator sends
commands to the telerobot but cannot perceive the effect of
those commands as the telerobot moves in its workspace. With
force reflection, the operator can "feel" the reaction of the
telerobot. While it is generally desirable to allow the
operator more feedback from the telerobot through force
reflection, the control is more difficult and could
potentially result in instability.

5. NASA/NBS STANDARD REFERENCE MODEL FOR TELEROBOT CONTROL
SYSTEM ARCHITECTURE (NASREM)

The fundamental paradigm of the controcl system is shown
in Figure 1. The control system architecture is a three
legged hierarchy of computing modules, serviced by a



communications system and a global memory. The task
decomposition modules perform real~time planning and task
monitoring functions; they decompose task goals both
spatially and temporally. The sensory processing modules
filter, correlate, detect, and integrate sensory information
over both space and time in order to recognize and measure
patterns, features, objects, events, and relationships in the
external world. The world modeling modules answer queries,
make predictions, and compute evaluation functions on the
state space defined by the information stored in global
memory. Global memory is a database which contains the
system’s best estimate of the state of the external world.
The world modeling modules keep the global memory database
current and consistent.

The first leg of the hierarchy consists of task
decomposition modules which plan and execute the decomposition
of high level goals into low level actions. Task
decomposition involves both a temporal decomposition (into
sequential actions along the time line) and a spatial
decomposition (into concurrent actions by different
subsystems). Each task decomposition module at each level of
the hierarchy consists of a job assignment manager, a set of
planners, and a set of executors. These decompose the input
task into both spatially and temporally distinct subtasks.

The second leg of the hierarchy consists of world
modeling modules which model (i.e., remember, estimate,
predict) and evaluate the state of the world. The "world
model" is the system’s best estimate and evaluation of the
history, current state, and possible future states of the
world, including the states of the system being controlled.
The "world model" includes both the world modeling modules and
a knowledge base stored in a global memory database where
state variables, maps, lists of objects and events, and
attributes of objects and events are maintained. The world
model maintains the global memory knowledge base by accepting
information from the sensory system, provides predictions of
expected sensory input to the corresponding sensory system
modules, based on the state of the task and estimates of the



external world, answers "What is?" questions asked by the
executors in the corresponding task decomposition modules, and
answers "What 1if?" questions asked by the planners in the
corresponding task decomposition modules.

The third leg of the hierarchy consists of sensory
processing sensory system modules. These recognize patterns,
detect events, and filter and integrate sensory information
over space and time. The sensory system modules at each level
compare world model predictions with sensory observations and
compute correlation and difference functions. These are
integrated over time and space so as to fuse sensory
information from multiple sources over extended time
intervals. Newly detected or recognized events, objects, and
relationships are entered by the world modeling modules into
the world model global memory database, and objects or
relationships perceived to no longer exist are removed. The
sensory system modules also contain functions which can
compute confidence factors and probabilities of recognized
events, and statistical estimates of stochastic state variable
values.

The control architecture has an operator interface at
each level in the hierarchy. The operator interface provides
a means by which human operators, either in the space station
or on the ground, can observe and supervise the telerobot.
Each level of the task decomposition hierarchy provides an
interface where the human operator can assume control. The
task commands into any level can be derived either from the
higher level task decomposition module, from the operator
interface, or from some combination of the two. Using a
variety of input devices, a human operator can enter the
control hierarchy at any level, at any time of his choosing,
to monitor a process, to insert information, to interrupt
automatic operation and take control of the task being
performed, or to apply human intelligence to sensory
processing or world modeling functions.

The sharing of command input between human and autonomous
control need not be all or none. It is possible in many cases
for the human and the automatic controllers to simultaneously



share control of a telerobot system. For example, in an
assembly operation, a human might control the position of an
end effector while the robot automatically controls its
orientation. For a more detailed description of NASREM, see

[2].

6. NIST IMPLEMENTATION OF NASREM

In order to implement a functional architecture,
especially one like NASREM which allows evolution with
technology, the interfaces must be carefully defined.

Although the NASREM functional architecture specifies the
purpose of each module in the control system hierarchy, it
does not completely specify the interfaces between modules.
This section will describe the method by which the interfaces
for the SERVO level of the hierarchy have been defined. The
method involves gathering all of the algorithms available for
SERVO level control, dividing each algorithm into the parts
which inherently belong to task decomposition, world modeling,
and sensory processing, and then deriving the interfaces which
will support these algorithms. Any design, however, must
constrain the problem sufficiently so that detailed interfaces
can be devised.

With this in mind, the Servo Level design was based on a
fundamental control approach which computes a motor command as
a function of feedback system state y, desired state
(attractor) y4, and control gains. 1In this approach, the
gains are coefficients of a linear combination of state errors
(y-Yq) - The system state and its attractor are composed from
the physical quantities to be controlled, (i.e., position,
force, etc.,) and can be expressed in an arbitrary coordinate
system. This type of algorithm is the basis for almost all
manipulator control schemes [3]. However, this basic
algorithm is inadequate for controlling the gross aspects of
manipulator motion, as described in [4]. The algorithm can
provide "small" motions so that the dynamics of the servo
algorithm itself are not significant. This means that the
Primitive Level must generate the gross dynamics of the motion



through a sequence of inputs to the Servo Level. This can be
achieved through an appropriate sequence of either attractor
points [3,5] or gain values [4].

Figure 2 depicts the detailed Servo Level design. The
task decomposition module at the Servo Level receives input
from Primitive in the form of the command specification
parameters. The command parameters include a coordinate
system specification C, which indicates the coordinate system
in which the current command is to be executed. C, can specify
joint, end-effector, or Cartesian (world) coordinates. Given
with respect to this coordinate system are desired position,
velocity, and acceleration vectors (zd, zZ3r zd) for the
manipulator, and the desired force and rate of change of force
vectors (f4, f45). These command vectors form the attractor
set for the manipulator. The K’s are the gain coefficient
matrices for error terms in the control equations. The
selection matrices (S,S’) apply to certain hybrid
force/position control algorithms. Finally, the "Algorithm"
specifier selects the control algorithm to be executed by the
Servo Level.

When the Servo Level planner receives a new command
specification, the planner transmits certain information to
world modeling. This information includes an attention
function which tells world modeling where to concentrate its
efforts, i.e., what information to compute for the executor.
The executor simply executes the algorithm indicated in the
command specification, using data supplied by world modeling
as needed.

The world modeling module at the Servo Level computes
model- based quantities for the executor, such as Jacobians,
inertia matrices, gravity compensations, Coriolis and
centrifugal force compensations, and potential field
(obstacle) compensations. In addition, world modeling
provides its best guess of the state of the manipulator in
terms of positions, velocities, end-effector forces and joint
torques. To do this, the module may have to resolve conflicts
between sensor data, such as between joint position and

Cartesian position sensors.



Sensory processing, as shown in Fiqure 2, reads sensors
relevant to Servo and provides the filtered sensor readings to
world modeling. In addition, certain information is
transmitted up to the Primitive Level of the sensory
processing hierarchy. Primitive uses this information, as well
as information from Servo Level world modeling, to monitor
execution of its trajectory. Based on this data, Primitive
computes the stiffness (gains) of the control, or switches
control algorithms altogether. For example, when Primitive
detects a contact with a surface, it may switch Servo to a
control algorithm that accommodates contact forces.

A more complete description of the Servo Level is
available in [3] where the vast majority of the existing
algorithms in the literature are described. The same process
for developing the interfaces based on the literature has also
been performed for the Primitive level and is available in
(5]. While the procedure is planned for each level in the
hierarchy, the amount of literature support tends to decrease
as one moves up the NASREM hierarchy.

Once the interfaces are defined, it is possible to choose
a computer architecture and begin to realize the systemn.

While every effort is being made to do the job properly, there
is no reason to assume that the implementation at NIST is
optimal in any way. It is simply illustrates one realistic
method to implement the NASREM architecture.

While a functional architecture is technology
independent, its implementation obviously depends entirely on
the state-of-the-~art of technology. The designer must choose
existing computers, buses, languages, etc., and, from these
tools, produce a computer architecture capable of performing
the functions of the functional architecture. The system must
adequately meet the real-time aspects of the controller so
that adequate performance is achieved through careful
consideration of computer choice, multiple processor real-time
operating system, inter-processing communication requirements,
tasking within certain processors, etc. For a more detailed
description of this methodology, see ([6].

The NIST implementation considers two aspects of the



software development process: the development environment on
which the code is written, debugged, and tested as well as
possible, and the target environment where the code for the
real-time robot control system is integrated into the systemn.
Figure 3 shows the approach. A network of SUN workstations
running UNIX is used for the development environment,
sacrificing the speed of the developed code for the ease of
development. Once the code is tested as well as possible, it
is downloaded to the target system. The target system
consists of a VME backplane of several (currently 6) 68020
processors. For rapid iconic image processing, the PIPE
system [7] is integrated into the system. The target hardware
drives a K~1607 Robotics Research Corp. arm.

From the software side, the multiprocessing operating
system used for the target is required to be as simple as
possible so that the overhead is minimized. The duties of the
operating system are limited to very simple actions such as
downloading executable code, starting up the processors, and
interprocessor communication. While tasking is not performed
at the lower levels of the hierarchy because of the overhead
associated with context switches, it is desirable at higher
levels in the hierarchy which are not as time critical. NIST
researchers are currently investigating three alternatives for
tasking: tasking provided by the run-time kernel of the
native ADA cross compiler, pSOS tasking, and ADA tasking.
Interprocessor communications alternatives including pRISM,
sockets, etc., must also be evaluated empirically. The actual
application code is written in ADA. Although ADA compilers
cannot currently produce code as efficient as other languages
such as C, NIST researchers have shown that the gap is
steadily decreasing [8].

The application code is developed by programming the
processes which achieve the functions associated with the
boxes in the functional architecture. The problem then
becomes one of assigning each of the processes, such as those
shown in Figure 2, to a particular processor. There is a
clear trade-off between the cost of the solution and the

performance of the system. There are currently no software



tools which automatically perform this assignment based on an
arbitrary index of performance. The approach at NIST is step-
wise refinement of the performance of the system. Given the
particular hardware being used, a certain number of processors
is chosen arbitrarily. For that configuration, the processes
are assigned to the processors. Then, the system is evaluated
in terms of its performance. If the performance is
unacceptable, the designer has several options. The first
option is to add more processors. This alternative is
balanced against additional communication required by the
processors. Another alternative is to add faster processors
or special purpose processors, such as dynamics chips, which
optimize particularly compute intensive operations. This
trade-off clearly relates to cost. Another alternative is to
reassign the processes to the processors in order to balance
the workload of each processor. Each of the alternatives can
be used by the designer in order to improve the performance of
the system. This allows a particular configuration which
implements the functional architecture to change with time as
improvements in technology are realized.

7. CONCLUSION

The FTS project is the driving force in U.S. space based
robots. At first element launch of the Space Station, it will
behave as a teleoperated system. However, by using the NASREM
architecture, it will be capable of evolving with technology,
incorporating greater levels of automation. In order to
perform sophisticated autonomous tasks, the FTS must have a
significant suite of sensors at first element launch and have
the capability to integrate new sensors into its control
sjsfem as these products become available.
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